

Hemolymph chemistry profiles and fatty acid analyses as tools for evaluating freshwater mussel health

Andrea Fritts, Robert Bringolf, Brent Knights, Lynn Bartsch, and Michelle Bartsch

U.S. Department of the Interior U.S. Geological Survey

Road map...

- Development of biomonitoring techniques
 Effects on survival
- Hemolymph chemistry profiles
 Thermal exposure, CO₂ exposure
- Fatty acids
 - A New Frontier

What can biomonitoring tell us?

- Tissue samples —> energy stores, genetic analysis
- Hemolymph samples akin to human blood tests
 - E.g. cholesterol, blood sugar, white blood cells

HEALTHCHEK PLUS			
Test	Result	Reference Range	Flag
WBC	7.9	4.9 - 17.6 K/uL	<u> </u>
RBC	5.31	5.39 - 8.70 M/uL	L
HGB	13.3	13.4 - 20.7 g/dL	L
нст	36.4	38.3 - 56.5 %	L
MCV	69	59 - 76 fL	
мсн	25.0	21.9 - 26.1 pg	
мснс	36.5	32.6 - 39.2 g/dL	

 Inform how sub-acute stresses may impact the health of mussel populations

Non-lethal metrics

 Essential when working with imperiled species such as freshwater mollusks

 Assessment of extraction techniques reaches back over two decades...

Tissue extraction effects

- No effect on survival of a 1 cm² mantle biopsy (~34 mg wet weight) after 1 year (Berg et al. 1995)
 - Quadrula quadrula, Actinonaias ligamentina

 No effect on survival of a 5-10 mg foot biopsy after 1.5 years (Naimo et al. 1998)

• Amblema plicata

Hemolymph extraction effects

 No effect on survival of 0.5 mL hemolymph extraction (anterior adductor muscle) after 3 mo

(Gustafson et al. 2005)

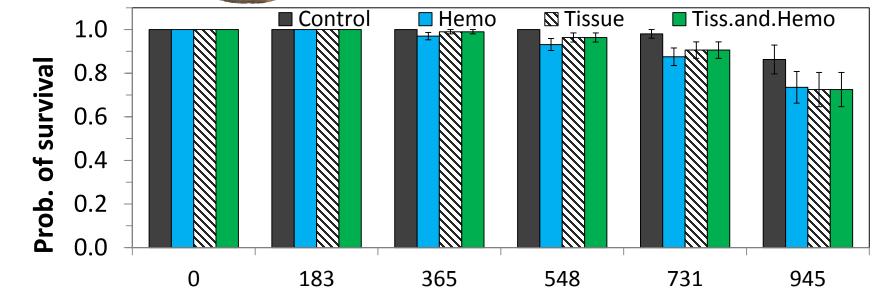
≥USGS

• Elliptio complanata

- No effect on survival of 0.1-0.2 mL hemolymph extraction after 8 weeks (McCartney et al. 2009)
 - Elliptio waccamawensis, Lampsilis fullerkati

Tandem tissue extraction

• Elliptio crassidens (large), Villosa vibex (small)

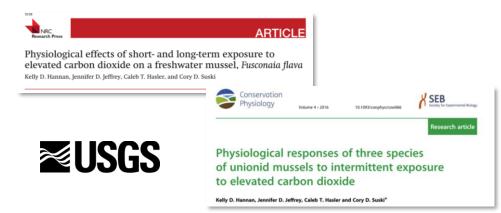


- Treatments
 - Control
 - Hemolymph (0.5 mL w/ 25 gauge needle)
 - Foot biopsy (~15 mg)
 - Hemolymph & foot biopsy
- Long-term survival
 - Floating baskets in pond
 - *E. crassidens* = 945 d, *V. vibex* = 820 d

E. crassidens

Survival conclusions

- Minimal effect on survival of large-bodied species
- Reduced survival in smallbodied species
 - Pond conditions unfavorable?
- Important to monitor for prolonged duration (i.e. >1yr)



Regenerated foot tissue, *V. vibex* 3 months post-biopsy, currently brooding

Hemolymph history

- Foundational hemolymph work
 Gustafson et al. (2005)
- Thermal stress exposures/dewatering/low flows
 - Archambault et al. 2013
 - Fritts et al. 2015a,b
- Elevated carbon dioxide
 Hannan et al. 2016a,b,c

Evaluation of a nonlethal technique for hemolymph collection in *Elliptio complanata*, a freshwater bivalve (Mollusca: Unionidae)

DISEASES OF AQUATIC ORGANISMS Dis Aquat Org

Vol 65:159-165 2004

Lori L. Gustaíson^{1,2,3,8}, Michael K. Stoskopí^{1,3,5}, Arthur E. Bogan^{1,4}, William Showers^{1,6}, Thomas J. Kwak^{1,7}, Shane Hanlon^{2,9}, Jay F. Levine^{1,2,*}

Vol. 65: 167-176, 200

Reference ranges for hemolymph chemistries from *Elliptio complanata* of North Carolina

DISEASES OF AQUATIC ORGANISMS

Dis Aqual Org

Published June 30

Lori L. Gustafson^{1,2,3,8}, Michael K. Stoskop^{(1,3,4}, William Showers^{1,5}, Greg Cope^{1,4}, Chris Eads², Richard Linnehan^{1,3,7}, Thomas J. Kwak^{1,6}, Beth Andersen⁵, Jay F. Levine^{1,2,*}

Marine and Freshwater Behaviour and Physiology, 2013 Vol. 46, No. 4, 229–250, http://dx.doi.org/10.1080/10236244.2013.805891 Taylor & Francis

Published June

Burrowing, byssus, and biomarkers: behavioral and physiological indicators of sublethal thermal stress in freshwater mussels (Unionidae)

Jennifer M. Archambault^a*, W. Gregory Cope^b and Thomas J. Kwak^c

ARTICLE

Evaluation of methods for assessing physiological biomarkers of stress in freshwater mussels¹

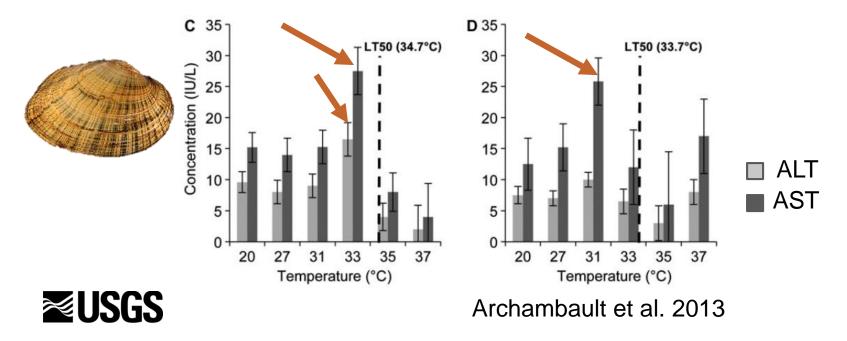
Andrea K. Fritts, James T. Peterson, Peter D. Hazelton, and Robert B. Bringolf

ARTICLE

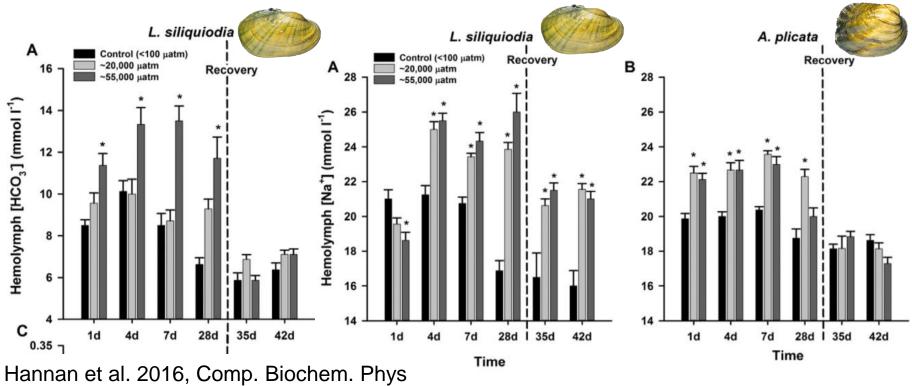
Nonlethal assessment of freshwater mussel physiological response to changes in environmental factors¹

Andrea K. Fritts, James T. Peterson, Jason M. Wisniewski, and Robert B. Bringolf

Decoding hemolymph

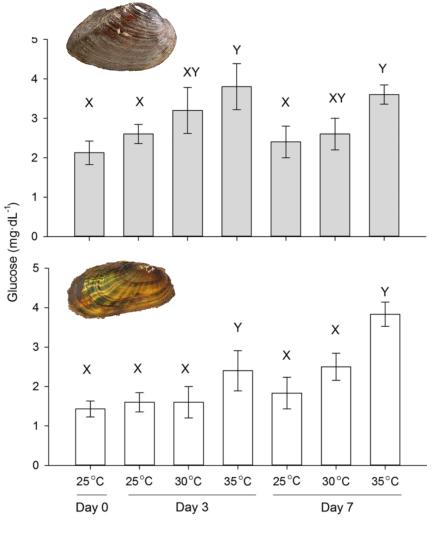

Reference ranges for *Elliptio complanata* in NC
 Gustafson et al. 2005

Parameter 1	Mussels	Lower ref. limit	Lower limit 90 % CI	Upper ref. limi	Upper limit t 90 % CI
Weight (g)	380	18.8	(17.0, 21.5)	104.6	(96.0, 113.3)
Length (mm)	380	54	(52, 55)	94	(90, 95)
Density (mg mm^{-3})	380	0.58	(0.51, 0.59)	0.77	(0.75, 0.79)
Glucose (mg dl ⁻¹)	372	<2	(<2, <2)	4	(4, 5)
Phosphorus (mg dl ⁻¹)	374	< 0.3	(<0.3, <0.3)	0.9	(0.9, 1.0)
Calcium (mg dl ⁻¹)	375	13.1	(12.5, 13.8)	23.7	(22.7, 25.0)
Magnesium (mg dl ⁻¹)	374	1.6	(1.5, 1.9)	3.8	(3.7, 4.0)
AST (U l^{-1})	374	<4	(<4, <4)	38	(27, 42)
Ammonia (µmol l ⁻¹)	380	<10	(<10, <10)	138	(111.2, 198.8)
Bicarbonate (mmol l ⁻¹) 375	<5	(<5, 5)	12	(11, 13)
Protein (mg dl ⁻¹)	378	19.5	(13.3, 22.5)	142.8	(130.1, 160.1)
Cell count (cells µl ⁻¹)	377	250	(170, 300)	2300	(2020, 2900)
Glycogen (mg g ⁻¹)	78	47	(36, 57)	176	(155, 187)


Decoding hemolymph: enzymes

- Elevated enzymes may indicate tissue damage
- ALT and AST—nonmonotonic response to thermal stress in multiple mussel species
 highest levels at temps just below LT50s

Decoding hemolymph: ions


- Ions change to mediate acidosis (\$\mu\$PH, \$\pm{H}\$H^+)
 - Elevated Ca⁺, Na⁺, HCO₃⁻, decreased Cl⁻
 - Nice description in Hannan et al. 2016 CJFAS
 - Similar response in both thermal and *p*CO₂ exposure

Decoding hemolymph: glucose

 Elevated glucose

 catabolism of glycogen to supplement glucose during stress events

Fritts et al. 2015

Hemolymph synthesis

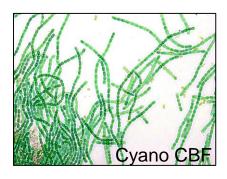
Similar responses in other aquatic inverts
 Oyster, Asian clam, isopod, crab, crayfish

- May indicate a generalized response to stress
- Smaller individuals may be more susceptible to stress events (Fritts et al. 2015, field study)

Hemolymph future work

May vary...

under different types of stressors
 among individuals of different size, sex, species


Need to identify optimal ranges

Fatty acid research

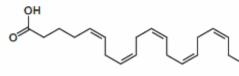
 Fatty acids, survival, growth of mussels over riverine gradient with variable cyanobacteria

RESEARCH ARTICLE Effects of food resources on the fatty acid composition, growth and survival of freshwater mussels

Michelle R. Bartsch^{1e} *, Lynn A. Bartsch^{1e}, William B. Richardson¹, Jon M. Vallazza¹, Brenda Moraska Lafrancois²

 Mussel fatty acid profiles over a large spatial gradient in Midwest

Potential competition w/ bigheaded carps



Fatty acid future work

 Additional work needed to identify optimal concentrations of specific fatty acids

🖻 e.g. EPA, DHA, ARA 🖾 🗸

DHA (22:6n-3)

EPA (20:5n-3)

 Evaluate how fatty acids respond to controlled stress exposures

ARA (20:4n-6)

Questions? afritts@usgs.gov

Sietman

